If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+31x-45=0
a = 8; b = 31; c = -45;
Δ = b2-4ac
Δ = 312-4·8·(-45)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-49}{2*8}=\frac{-80}{16} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+49}{2*8}=\frac{18}{16} =1+1/8 $
| 14-3y=2(2y+4) | | a÷5+6=13 | | 7−3x+3+8x= | | 7x^2+4=3x^2+328 | | 12x-48=10x-60 | | (y-5)^2=121 | | (X+8)(x=10) | | 7(9-x)-8x(9-x)=0 | | 3b+4=-4+4b | | 1.4-1.6(t*6)=4.6 | | 2x-10+180+3x+10=360 | | 1.5x=5+2.5(x-5)=70 | | 2x-15+60+2x+15=180 | | 40-3x=70-6x | | 7x=-12+8 | | 3(2x+-1)=21 | | -9x-(-6x)+6=24 | | y^2+12+5=0 | | 8+2n=3n | | -7y-y+4=28 | | -8x+16=20 | | 7x/8-1/4=4/5x+11/21 | | X/7=2x/63+6 | | 5x+6(2x-9)=54 | | 2(4−2x)+3x=2x+2(5+x)−6 | | 124+6x-20=180 | | (3c-5)(c+3)=0 | | 2+(250/x^2)+(3.141592654/2)=0 | | 2+(250/x^2)+3.141592654/2=0 | | -8y-(-6y)+4=14 | | 250=1E+10x | | 1000+600+5x=600+200+x |